Functional measurement error in functional regression
نویسندگان
چکیده
منابع مشابه
TESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS
In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...
متن کاملtesting for autocorrelation in unequally replicated functional measurement error models
in the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. in this paper we extend these results to the both equally and unequally replicated functionally measurement error models. we consider the equally and unequally replicated cases separately, because in the first case the re...
متن کاملSemiparametric estimators of functional measurement error models with unknown error
We consider functional measurement error models where the measurement error distribution is estimated non-parametrically.We derive a locally efficient semiparametric estimator but propose not to implement it owing to its numerical complexity. Instead, a plug-in estimator is proposed, where the measurement error distribution is estimated through non-parametric kernel methods based on multiple me...
متن کاملFunctional Regression
Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman’s 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fas...
متن کاملQuantile Regression With Measurement Error.
Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Statistics
سال: 2020
ISSN: 0319-5724,1708-945X
DOI: 10.1002/cjs.11529